Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Pathog ; 17(9): e1009701, 2021 09.
Article in English | MEDLINE | ID: covidwho-1701737

ABSTRACT

The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized Wuhan-Hu-1 SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The antibodies recognized and potently neutralized a panel of different Spike variants including Alpha, Delta, Epsilon, Eta and A.23.1, but to a lesser extent Beta and Gamma. The DNA-only vaccine regimens were compared to a regimen that included co-immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques.


Subject(s)
Macaca mulatta , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA , Animals , COVID-19/immunology , COVID-19/therapy , Cohort Studies , DNA, Viral/immunology , Disease Models, Animal , Female , Immunization, Passive , Leukocytes, Mononuclear/immunology , Mice , RNA, Messenger/analysis , SARS-CoV-2/genetics , T-Lymphocytes/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , COVID-19 Serotherapy
2.
Front Immunol ; 12: 793953, 2021.
Article in English | MEDLINE | ID: covidwho-1572289

ABSTRACT

Durability of SARS-CoV-2 Spike antibody responses after infection provides information relevant to understanding protection against COVID-19 in humans. We report the results of a sequential evaluation of anti-SARS-CoV-2 antibodies in convalescent patients with a median follow-up of 14 months (range 12.4-15.4) post first symptom onset. We report persistence of antibodies for all four specificities tested [Spike, Spike Receptor Binding Domain (Spike-RBD), Nucleocapsid, Nucleocapsid RNA Binding Domain (N-RBD)]. Anti-Spike antibodies persist better than anti-Nucleocapsid antibodies. The durability analysis supports a bi-phasic antibody decay with longer half-lives of antibodies after 6 months and antibody persistence for up to 14 months. Patients infected with the Wuhan (WA1) strain maintained strong cross-reactive recognition of Alpha and Delta Spike-RBD but significantly reduced binding to Beta and Mu Spike-RBD. Sixty percent of convalescent patients with detectable WA1-specific NAb also showed strong neutralization of the Delta variant, the prevalent strain of the present pandemic. These data show that convalescent patients maintain functional antibody responses for more than one year after infection, suggesting a strong long-lasting response after symptomatic disease that may offer a prolonged protection against re-infection. One patient from this cohort showed strong increase of both Spike and Nucleocapsid antibodies at 14 months post-infection indicating SARS-CoV-2 re-exposure. These antibodies showed stronger cross-reactivity to a panel of Spike-RBD including Beta, Delta and Mu and neutralization of a panel of Spike variants including Beta and Gamma. This patient provides an example of strong anti-Spike recall immunity able to control infection at an asymptomatic level. Together, the antibodies from SARS-CoV-2 convalescent patients persist over 14 months and continue to maintain cross-reactivity to the current variants of concern and show strong functional properties.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Binding Sites, Antibody/immunology , COVID-19/virology , Cohort Studies , Cross Reactions/immunology , Female , Humans , Male , Middle Aged , Neutralization Tests/methods , Nucleocapsid/immunology , Nucleocapsid/metabolism , Protein Binding/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Time Factors
3.
Viruses ; 13(9)2021 09 15.
Article in English | MEDLINE | ID: covidwho-1411088

ABSTRACT

COVID-19 is an ongoing pandemic with high morbidity and mortality. Despite meticulous research, only dexamethasone has shown consistent mortality reduction. Convalescent plasma (CP) infusion might also develop into a safe and effective treatment modality on the basis of recent studies and meta-analyses; however, little is known regarding the kinetics of antibodies in CP recipients. To evaluate the kinetics, we followed 31 CP recipients longitudinally enrolled at a median of 3 days post symptom onset for changes in binding and neutralizing antibody titers and viral loads. Antibodies against the complete trimeric Spike protein and the receptor-binding domain (Spike-RBD), as well as against the complete Nucleocapsid protein and the RNA binding domain (N-RBD) were determined at baseline and weekly following CP infusion. Neutralizing antibody (pseudotype NAb) titers were determined at the same time points. Viral loads were determined semi-quantitatively by SARS-CoV-2 PCR. Patients with low humoral responses at entry showed a robust increase of antibodies to all SARS-CoV-2 proteins and Nab, reaching peak levels within 2 weeks. The rapid increase in binding and neutralizing antibodies was paralleled by a concomitant clearance of the virus within the same timeframe. Patients with high humoral responses at entry demonstrated low or no further increases; however, virus clearance followed the same trajectory as in patients with low antibody response at baseline. Together, the sequential immunological and virological analysis of this well-defined cohort of patients early in infection shows the presence of high levels of binding and neutralizing antibodies and potent clearance of the virus.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Nucleocapsid/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Aged , Aged, 80 and over , Antibody Formation/immunology , COVID-19/therapy , Female , Host-Pathogen Interactions , Humans , Immunization, Passive , Kinetics , Male , Middle Aged , COVID-19 Serotherapy
4.
Eur J Intern Med ; 89: 87-96, 2021 07.
Article in English | MEDLINE | ID: covidwho-1313078

ABSTRACT

Elucidating the characteristics of human immune response against SARS-CoV-2 is of high priority and relevant for determining vaccine strategies. We report the results of a follow-up evaluation of anti-SARS-CoV-2 antibodies in 148 convalescent plasma donors who participated in a phase 2 study at a median of 8.3 months (range 6.8-10.5 months) post first symptom onset. Monitoring responses over time, we found contraction of antibody responses for all four antigens tested, with Spike antibodies showing higher persistence than Nucleocapsid antibodies. A piecewise linear random-effects multivariate regression analysis showed a bi-phasic antibody decay with a more pronounced decrease during the first 6 months post symptoms onset by analysis of two intervals. Interestingly, antibodies to Spike showed better longevity whereas their neutralization ability contracted faster. As a result, neutralizing antibodies were detected in only 76% of patients at the last time point. In a multivariate analysis, older age and hospitalization were independently associated with higher Spike, Spike-RBD, Nucleocapsid, N-RBD antibodies and neutralizing antibody levels. Results on persistence and neutralizing ability of anti-SARS-CoV-2 antibodies, especially against Spike and Spike-RBD, should be considered in the design of future vaccination strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Kinetics , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL